COURSE PLANER

Department of Chemistry

Basirhat College Session: 2018-19 CEMG - III-Year

Paper IV/ Paper Code: CEMGT 34A, 34B, 34C/ Total Marks: 75

Course coordinator: Dr. Swastik Karmakar

CO1: This course is about the theory on analysis like Error, Volumetric analysis.

CO2: It's a application based chemistry provides industrial application and environmental applications also.

SL	Course Topic	Teacher	Class No	Remarks
Jul-	CEMGT 34A	SK	1	
	Unit I. Chemical analysis			
	Gravimetric Analysis: Solubility product and common ion effect.			
	CEMGT 34A	SM	1	-
	Unit I. Chemical analysis			
	Error analysis and computer applications			
	Accuracy and precision of quantitative analysis.			
	CEMGT 34A	PD	1	
	Unit II: Volumetric Analysis			
	Primary and secondary standard substances.			
	CEMGT 34B	BD	1	-
	Unit I. Industrial chemistry I			
	a) Fuels: Classification of fuel, heating values.			
	CEMGT 34A	SK	3	
Aug	Unit I. Chemical analysis			
1 1008	Requirements of gravimetry. Gravimetric estimation of chloride,			
	sulphate, lead, barium and nickel.			
	CEMGT 34A	SM	4	-
	Unit I. Chemical analysis	51/1		
	Error analysis and computer applications			
	Determinate-, indeterminate-, systematic- and random-errors. Methods			
	of least squares and standard deviations.			
	CEMGT 34A	PD	4	_
	Unit II: Volumetric Analysis		-	
	Principles of acid-base, oxidation –reduction, and complexometric			
	titrations.			
	CEMGT 34B	BD	3	
	Unit I. Industrial chemistry I	DD		
	Origin of coal, carbonization of coal, coal gas, producer gas, water			
	gas, coal based chemicals. Origin and composition of petroleum,			
	petroleum refining.			
Sept	CEMGT 34A	SM	4	
Sept	Unit I. Chemical analysis	5141	-	
	Error analysis and computer applications			
	General introduction to computers, different components of a			
	computer, hardware and software, input and output devices.			
	CEMGT 34A	DD	2	-
		PD	3	
	Unit II: Volumetric Analysis			

	Asid has and an and motal ion indicators. Dringingly of actionation of			
	Acid-base, redox and metal-ion indicators. Principles of estimation of			
	mixtures of NaHCO3 and Na2CO3 (by acidimetry).	22		
	CEMGT 34B	BD	3	
	Unit I. Industrial chemistry I			
	Cracking, knocking, octane number, anti-knock compounds,			
	Kerosene, liquefied petroleum gas (LPG), liquefied natural gas			
	(LNG), petrochemicals (C1 to C3 compounds and their uses).			
	CEMGT 34C	SK	4	
	Unit I. Environmental chemistry			
	The Atmosphere:			
	Composition and structure of the atmosphere: troposphere,			
	stratosphere, mesosphere and thermosphere. Ozone layer and its role.			
	Major air pollutants: CO, SO2, NO and particulate matters -their			
	origins and harmful effects.			
	CEMGT 34A	SM	4	
	Unit I. Chemical analysis			
Nov	Error analysis and computer applications			
	binary numbers and arithmetic. Introduction to computer languages,			
	programming and operating systems.			
	CEMGT 34A	PD	4	
	Unit II: Volumetric Analysis			
	Principles of estimation of iron, copper, manganese, chromium (by			
	redox titration).			
	CEMGT 34B	BD	4	
	Unit I. Industrial chemistry I	DD	'	
	b) Fertilizers: Manufacture of ammonia and ammonium salts, urea,			
	superphosphate, biofertilizers.			
	CEMGT 34C	SK	4	
	Unit I. Environmental chemistry	SK	4	
	Problems of ozone layer depletion, green house effect, acid rain and			
	photochemical smog. Air pollution episodes. Air quality standard. Air pollution control measures: cyclone collector, electrostatic			
	precipitator, catalytic converter.	DD	4	
	CEMGT 34A	PD	4	
	Unit II: Volumetric Analysis			
_	Principles of estimation of zinc, calcium, magnesium (by			
Dec	complexometric EDTA titration).	75		
	CEMGT 34B	BD	4	
	Unit I. Industrial chemistry I			
	c) Glass and Ceramics: Definition and manufacture of glasses, optical			
	glass and coloured glass. Clay and feldspar, glazing and vitrification,			
	glazed porcelain, enamel. Portland cement: composition and setting of			
	cement, white cement.			
	CEMGT 34C	SK	4	
	Unit I. Environmental chemistry			
	The Hydrosphere:			
	Environmental role of water, natural water sources, water treatment			
	for industrial, domestic and laboratory uses. Water pollutants: action			
	of soaps and detergents, phosphates, industrial effluents, agricultural			
	run off, domestic wastes.			
	CEMGT 34C	SM	4	
	Unit II. Industrial Chemistry III			
	Fats-Oils-Detergents: Fats and oils, natural fat, edible and inedible oil			
	of vegetable origin. Common fatty acids, glycerides.			

Jan CEMGT 34A	PD	4
Unit II: Volumetric Analysis		
Chromatographic methods of analysis: column chromatographic	ography and	
thin layer chromatography		
CEMGT 34C	SK	4
Unit I. Environmental chemistry		
thermal pollution radioactive pollution and their effects on	n animal and	
plant life, water pollution episodes. Water pollution control		
waste water treatment: chemical treatment and microbia		
water quality standards: DO. BOD, COD, TDS an	nd hardness	
parameters. Desalination of sea water: reverse osmo		
dialysis.		
CEMGT 34C	SM	4
Unit II. Industrial Chemistry III		
Hydrogenation of unsaturated oil, production of var	naspati and	
margarine. Production of toilet and washing soaps, En	zyme based	
detergents, detergent powder, liquid soaps.		
CEMGT 34C	BD	4
Unit II. Industrial Chemistry III		
Pesticides: Common pesticides: Production, applications	and residual	
toxicity of gammaxane, aldrin, parathion, malathion, DD	T, paraquat,	
decamethrin.		
Feb CEMGT 34C	SK	4
Unit I. Environmental chemistry		
The Lithosphere:		
Water and air in soil, waste matters and pollutants in	soil, waste	
classification, treatment and disposal. Soil pollution	and control	
measures.		
CEMGT 34C	BD	4
Unit II. Industrial Chemistry III		
Food Additives: Food flavour, food colour, food pr	reservatives,	
artificial sweeteners, acidulants, alkalies, edible emulsifier	rs and edible	
foaming agents, sequesterants – uses and abuses of these s	ubstances in	
food beverages.		
CEMGT 34C	SM	4
Unit II. Industrial Chemistry III		
Food Additives: Food flavour, food colour, food pr	reservatives,	
artificial sweeteners, acidulants, alkalies,		
TOT	TAL CLASS 90	

- 1. Books:
- 1) E. Stocchi: *Industrial Chemistry*, Vol-I, Ellis Horwood Ltd.UK.
- 2) R. M. Felder, R. W. Rousseau: *Elementary Principles of Chemical Processes*, Wiley Publishers, NewDelhi.
- 3) W. D. Kingery, H. K. Bowen, D. R. Uhlmann: *Introduction to Ceramics*, Wiley Publishers, NewDelhi.
- 4) J. A. Kent: Riegel's Handbook of Industrial Chemistry, CBS Publishers, NewDelhi.
- 5) P. C. Jain & M. Jain: Engineering Chemistry, DhanpatRai& Sons, Delhi.
- 6) R. Gopalan, D. Venkappayya, S. Nagarajan: *Engineering Chemistry*, Vikas Publications, NewDelhi.
- 7) B. K. Sharma: Engineering Chemistry, Goel Publishing House, Meerut

2. Other resources:

*Remarks will specify

The nature of the class-topic (viz. Theoretical, Practical, and Tutorial).
Methodology of teaching (whether using ICT, engaging students in group discussion, quiz
etc. etc.)
Different modes of assessment. (Please check UGC evaluation reforms).

Paper IV/ Paper Code: CEMGP 34D/ Total Marks: 25

Course coordinator: Dr. Manojit Sarkar

CO1: Students will learn about all the experiments regarding various volumetric titrations and its application.

CO2: different estimations can be performed by the student wel.

Course planner

SL	Course Topic	Teacher	Class	Remarks
			hour	
Jul-	Experiment –I. Preparation of standard (N/20) solution of oxalic acid	MS+BD	2+2	
	and standardization of (a) NaOH solution (b) KMnO ₄ solution (c)	SK+SM		
	Mohr's salt solution (against KMnO ₄).			
Aug	Experiment –II. Preparation of standard (N/20) K ₂ Cr ₂ O ₇ solution of	MS+BD	2+2	
	oxalic acid and standardization of (a) Mohr's salt solution (b) KMnO ₄	SK+SM		
	solution (c) sodium thiosulphate solution.			
Sept	Experiment –III. Preparation of standard (M/50) Zinc acetate	MS+BD	4+4	
	solution and (a) standardization of Na ₂ EDTA solution and (b)	SK+SM		
	Estimation of unknown solution of single metal ion (Zn ²⁺ /Ca ²⁺ /Mg ²⁺).			
Nov	Experiment –IV. Acidimetric estimation of NaHCO ₃ , Na ₂ CO ₃ mixture	MS+BD	2+2	
	using phenolphthalein and methyl orange.	SK+SM		
Dec	Experiment –V. Alkalimetric estimation of HCl, CH ₃ COOH mixture.	MS+BD	2+2	
	Experiment –VI. Estimation of Fe (II) + Fe (III) mixture using	SK+SM		
	standard (N/20) solution of (a) K ₂ Cr ₂ O ₇ (b) KMnO ₄ as titrants.			
Jan	Experiment -VII. Estimation of total hardness of water (EDTA	MS+BD	2+2	
	method).	SK+SM		
	Experiment –VIII. Estimation of Vitamin C by iodometric method			
Feb	Experiment –IX. Estimation of available oxygen in pyrolusite	MS+BD	2	
	TOTAL CLAS	SS HOUR	30	

Resources:

3 Books:

- 1. Palit, S.R., *Practical Physical Chemistry* Science BookAgency.
- 2. Dutta, S.K., *Physical Chemistry Experiments* Bharati BookStall

4. Other resources:

*Remarks will specify

The nature of the class-topic (viz. Theoretical, Practical, and Tutorial).
Methodology of teaching (whether using ICT, engaging students in group discussion, quiz etc. etc.)
Different modes of assessment. (Please check UGC evaluation reforms).

COURSE PLANER Department of Chemistry Basirhat College Session: 2018-19 CEMG II-Year

Paper II

Courses: CEMGT 22A, 22B, 22C, 22D / Total Marks: 100

Course coordinator: Dr. Bidyut Debnath

CO1: Students will learn about Acids bases, buffer solution and PH.

CO2: The course provides ideas about kinetics and catalyst.

SL	Course Topic	Tea	Class	Rem
		cher	No	arks
	CEMGT 22A	BD	2	
	Unit I. Basic physical chemistry III			
	Thermodynamics II:			
	(a) Spontaneous processes, heat engine, Carnot cycle and its efficiency,			
	Second law of thermodynamics, Entropy (S) as a state function, molecular			
	interpretation of entropy.			
	CEMGT 22A	SM	2	
	Unit II. Basic physical chemistry IV			
	Chemical kinetics and catalysis:			
Jul-	Order and molecularity of reactions, rate laws and rate equations for first			
	order and second order reactions (differential and integrated forms).			
	CEMGT 22C	PD	4	
	Unit I. Basic organic chemistry III			
	a) Aldehydes and ketones: the nature of carbonyl group, methods of			
	synthesis, physical properties, Cannizzaro reaction, relative reactivities and			
	distinction of aldehydes and ketones, Aldol condensation (with mechanism),			
	Perkin reaction, Benzoin condensation, Claisen condensation, Oxidation and			
	reduction reactions.			
	CEMGT 22A	BD	4	
	Unit I. Basic physical chemistry III			
	Thermodynamics II:			
	Entropy changes in simple transformations; including entropy change of ideal			
	gas during expansion, Free energy: Gibbs function (G) and Helmholtz			
	function (A), Gibbs-Helmholtz equation, criteria for thermodynamic			
Aug	equilibrium and spontaneity of a process.			

		Γ		
	CEMGT 22A	SM	4	
	Unit II. Basic physical chemistry IV			
	Chemical kinetics and catalysis:			
	Zero order reactions. Determination of order of reactions. Temperature			
	dependence of reaction rate, the Arrhenius equation; special emphasis on			
	temperature coefficient, energy of activation.			
	CEMGT 22C	PD	8	
	Unit I. Basic organic chemistry III		0	
	•			
	b) Carboxylic acids and their derivatives: acidity of carboxylic acids and			
	effects of substituents on acidity, chemical reactivity, mechanism of			
	esterification of carboxylic acids and hydrolysis of esters (BAC2 and AAC2			
	only)			
	c) Carbohydrates: Introduction, occurrence and classification of			
	carbohydrates, constitution of glucose, osazone formation, reactions of			
	glucose and fructose.			
	CEMGT 22A	BD	4	
	Unit I. Basic physical chemistry III	-		
	Thermodynamics II:			
	(b) Chemical equilibrium: chemical equlibria of homogeneous and			
	heterogeneous systems, derivation of expression of equilibrium constants;			
	temperature, pressure and concentration dependence of equilibrium constants			
	(K _P , K _C , K _X); Le Chatelier's Principle of dynamic equilibrium.			
	OTT COT AA I	G3.5		
	CEMGT 22A	SM	4	
	Unit II. Basic physical chemistry IV			
Sept	Catalytic reactions: homogeneous and heterogeneous catalytic reactions,			
	autocatalytic reactions, catalyst poisons, catalyst promoters (typical			
	examples)			
	CEMGT 22C	PD	3+5	
	Unit I. Basic organic chemistry III			
	Mutarotation, cyclic structures – pyranose and furanose forms (determination			
	of ring-size excluded), epimerization, chain-lengthening (Kiliani –Fischer			
	method) and chainshortening (Ruff's method) in aldoses.			
	Unit II. Basic organic chemistry IV			
	a) Phenols: synthesis, acidic character and chemical reactions of phenols,			
	Kolbe reactions, Reimer-Tiemann reaction, Fries rearrangement, Claisen			
	rearrangement.			
	b) Organic compounds containing nitrogen: aromatic nitro compounds –			
	reduction under different conditions. [acidic, neutral and alkaline]. Methods			
	of synthesis of aliphatic amines.			
	CEMGT 22A	BD	1	
	Unit I. Basic physical chemistry III			
	Thermodynamics II:			
	(c) Phase equilibrium			
	Definitions of phase, component and degrees of freedom. Phase rule.			
	Definition of phase diagram.			
	CEMGT 22A	SM	1	
	Unit II. Basic physical chemistry IV	~1.1		
	Photochemistry			
	•			
O-4	Grothus-Draper Law, Lambert-Beer's Law.	DD.		
Oct	CEMGT 22C	PD	2	
	Unit II. Basic organic chemistry IV	1	1	
	•			
	b) Heinsberg's method of amine separation, Hofmann degradation, Gabriel's phthalimide synthesis. Distinction of primary, secondary and tertiary amines.			

	CEMGT 22A	BD	4	
	Unit I. Basic physical chemistry III			
	Thermodynamics II:			
	(c) Phase equilibrium			
	Phase equilibria for one component system – water, CO2.			
	Heterogeneous systems: Nernst Distribution Law, miscibility and distillation			
	of binary liquid mixtures, azeotropic mixture, Critical Solution temperature, steam distillation.			
		CM	4	
	CEMGT 22A	SM	4	
	Unit II. Basic physical chemistry IV			
	Photochemistry			
	Molar extinction coefficient, Stark- Einstein Law of photochemical			
Nov	equivalence and quantum yield, examples of low and high quantum yields,			
	Luminiscence: Fluorescence and phosphorescence.			
	CEMGT 22C	PD	8	
	Unit II. Basic organic chemistry IV			
	Methods of synthesis of aromatic amines, basicity of aliphatic and aromatic			
	amines. Diazotization and coupling reactions and their mechanisms; synthetic			
	applications of benzene diazonium salts. [Sandmeyer's reaction, preparation			
	of nitro compounds, phenols, carboxylic acids and hydrocarbons thereby].			
	c) Amino acids, Proteins: methods of synthesis of α –amino acids (glycine			
	and alanine using Gabriel's phthalimide synthesis and Strecker synthesis).			
	Physical properties. Zwitterion structures, isoelectric point.			
	CEMGT 22B	SM	4	
	Unit I. Basic physical chemistry V			
	a) Acids-bases and solvents:			
Dec	Modern aspects of acids and bases: Arrhenius theory, theory of solvent			
	system, Bronsted and Lowry's concept, Lewis concept with typical examples,			
	applications and limitations. Strengths of acids and bases (elementary idea).			
	CEMGT 22B	BD	4	
	Unit II. Basic physical chemistry VI		-	
	a) Solutions of non-electrolytes:			
	Colligative properties of solution, Henry's Law, Raoult's Law, relative			
	lowering of vapor pressure, osmosis and osmotic pressure; Elevation of			
	boiling point.			
	CEMGT 22 D:	PD	8	
	Unit I. Basic inorganic chemistry III	עון		
	Coordinate bonds and Coordination compounds: complex salts and double			
	salts, Warner's theory of coordination, chelate complexes, stereochemistry of			
	coordination numbers 4 and 6. IUPAC nomenclature of coordination			
Ior	complexes (mononuclear complexes only). CEMGT 22B	CM	4	
Jan		SM	4	
	Unit I. Basic physical chemistry V			
	Ionization of weak acids and bases in aqueous solutions, application of			
	Ostwald's dilution law, ionization constants, ionic product of water, pH-scale,			
	buffer solutions and calculation of pH values, buffer actions; hydrolysis of			
	salts.	P		
	CEMGT 22B	BD	4	
	Unit II. Basic physical chemistry VI			
	a) Solutions of non-electrolytes:			
	Depression of freezing point of solvents – (without deduction), calculation of			
	molecular weight of solute from measurement of colligative properties of			
	solutions.			

	CENCE 22 D	DD	0	1
	CEMGT 22 D:	PD	8	
	Unit I. Basic inorganic chemistry III			
	Preparation and uses of the following compounds:			
	Sodium borohydride, lithium aluminium hydride, calcium carbide, hydrazine,			
	hydroxylamine, sodium bismuthate, sodium thiosulphate, potassium			
	peroxydisulphate, Perchloric acid, potassium bromate, potassium			
	ferrocyanide, Mohr's salt, potassium chromate, potassium dichromate and			
	potassium permanganate.			
Feb	CEMGT 22B	SM	4	
	Unit I. Basic physical chemistry V			
	b) Solutions of electrolytes:			
	Electrolytic conductance, specific conductance, equivalent conductance and			
	molar conductance of electrolytic solutions. Influence of temperature and			
	dilution on conductivity of strong and weak electrolytes, conductometric			
	titration – acid-base, precipitation.			
	CEMGT 22B	BD	4	
	Unit II. Basic physical chemistry VI	עני	'	
	b) Colloids:			
	Colloids and crystalloids, classification of colloids, preparation and			
	purification of colloids: ferric hydroxide sol and gold sol. Properties of			
	colloids: Brownian motion, peptization, dialysis.	DD	-	
	CEMGT 22 D:	PD	6	
	Unit II: Basic inorganic chemistry IV 16			
	Comparative study of s-block elements: Group trends, electronic			
	configuration, isolation of pure elements, common oxidation states, inert pair			
	effect.			
Mar	CEMGT 22B	SM	4	
	Unit I. Basic physical chemistry V			
	Electrode potential:			
	Electrode potentials, Nernst Equation, Reference electrodes, Normal			
	Hydrogen Electrode and calomel electrodes, Emf of electrochemical cells and			
	its measurement, electrode potential series and its applications, measurement			
	of pH using glass calomel electrode.			
	CEMGT 22B	BD	3	
	Unit II. Basic physical chemistry VI			
	b) Colloids:			
	Tyndal effect and its applications. Protecting colloids, gold number,			
	isoelectric points, coagulation of colloids by electrolytes, Schulze-Hardy rule.			
	CEMGT 22 D:	PD	6	•
	Unit II: Basic inorganic chemistry IV			
	chemical properties and reactions in respect of the following group elements:			
	i) Li-Na-K			
	ii) Be-Mg-Ca-Sr-Ba			
Apr	CEMGT 22 D:	BD	6	
Apı	Unit II: Basic inorganic chemistry IV			
	Extraction and purification of elements from natural sources: Li, Cr, Ni, Ag,	+ PD		
	Au.	+ CM		
-	Electroplating, galvanizing and anodizing.	SM	107	
		Total:	125	

5. Books:

6. Sethi, A. Conceptual Organic Chemistry; New Age International Publisher.

- 7. Parmar, V. S. A Text Book of Organic Chemistry, S. Chand &Sons.
- 8. Madan, R. L. Organic Chemistry, S. Chand & Sons.
- 9. Lee, J.D. Concise Inorganic Chemistry ELBS,1991.
- 10. Cotton, F.A., Wilkinson, G. & Gaus, P.L. Basic Inorganic Chemistry, 3rded., Wiley.
- 11. Barrow, G.M. Physical Chemistry Tata McGraw-Hill(2007).
- 12. Castellan, G.W. Physical Chemistry 4th Ed. Narosa(2004).
- 13. Kotz, J.C., Treichel, P.M. & Townsend, J.R. *General Chemistry* Cengage Learning India Pvt. Ltd., New Delhi (2009).
- 14. Mahan, B.H. *University Chemistry* 3rd Ed. Narosa(1998).
- 15. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York(1985).
- 16. Chugh, K.L., Agnish, S.L. *A Text Book of Physical Chemistry* Kalyani Publishers7.Bahl, B.S., Bahl, A., Tuli, G.D., *Essentials of Physical Chemistry* S. Chand & Co.ltd.
- 17. Palit, S. R., Elementary Physical Chemistry Book Syndicate Pvt.Ltd.
- 18. Mandal, A. K. Degree Physical and General Chemistry Sarat BookHouse
- 19. Pahari, S., Physical Chemistry New Central BookAgency
- 20. Pahari, S., Pahari, D., Problems in Physical Chemistry New Central BookAgency

Other resources:

*Remarks v	will s	pecify
------------	--------	--------

The nature of the class-topic (viz. Theoretical, Practical, and Tutorial).
Methodology of teaching (whether using ICT, engaging students in group discussion, quiz
etc. etc.)
Differentmodes of assessment. (Please check UGC evaluation reforms).

COURSE PLANER

Department of Chemistry Basirhat College

Session: 2018-19 CEMG II-Year

Paper III

Courses: CEMGP 23A, 23B Total Marks: 100

Course coordinator: Dr. Saheli Ganguly

CO1: Student will learn about the experimental ideas about functional group analysis.

CO2: This course provides about ideas about qualitative and quantitative analysis of various inorganic

samples.

SL	Course Topic	Tea	Class	Rem
		cher	No	arks
	UNIT 1 : Qualitative Analysis of Single Organic Compound (Solid)	MS	2	
July	Experiment A: Test for special element (N, S, Cl, Br and I)	+PD		
	Experiment B: Solubility tests and solubility classification.			
	UNIT 1 : Qualitative Analysis of Single Organic Compound (Solid)	BD	2	
	Experiment C: Test for the following functional groups.	+SG		
	Aromatic –NO ₂ , Aromatic –NH ₂ , -OH (phenolic), Carbonyl (aldehyde and			
	ketone),			
	COOH and olefinic unsaturation.			
	UNIT 1 : Qualitative Analysis of Single Organic Compound (Solid)	MS	8	
	Experiment C: Test for the following functional groups.	+PD		
	Aromatic –NO ₂ , Aromatic –NH ₂ , -OH (phenolic), Carbonyl (aldehyde and			
	ketone),			
Aug	COOH and olefinic unsaturation.			
	Experiment D: Determination of the melting point of the compound.			
	UNIT 1 : Qualitative Analysis of Single Organic Compound (Solid)	BD	8	
	Experiment C: Test for the following functional groups.	+SG		
	Aromatic –NO ₂ , Aromatic –NH ₂ , -OH (phenolic), Carbonyl (aldehyde and			
	ketone),			
	COOH and olefinic unsaturation.			
	Experiment D: Determination of the melting point of the compound.			
	UNIT 1 : Qualitative Analysis of Single Organic Compound (Solid)	MS	8	
Sept	Analysis of unknown organic samples	+PD		
	UNIT 1 : Qualitative Analysis of Single Organic Compound (Solid)	BD	8	
	Analysis of unknown organic samples	+SG		
	UNIT 1 : Qualitative Analysis of Single Organic Compound (Solid)	MS	2	
Oct	Analysis of unknown organic samples	+PD		
	UNIT 1 : Qualitative Analysis of Single Organic Compound (Solid)	BD	2	
	Analysis of unknown organic samples	+SG		
Nov	UNIT-2 : Qualitative Analysis of Inorganic Mixture	MS	8	
	Experiments A: Preliminary Tests for Acid and Basic radicals in given	+PD		
	samples.			
	Acid Radicals: Cl ⁻ , Br ⁻ , I ⁻ , NO3 ¹ -, S ²⁻ , SO4 ⁻² , S ₂ O ₃ ²⁻ PO4 ⁻³ , BO3 ³⁻ , H3BO3.			
	Basic Radicals: Cu ⁺² , Cr ⁺³ , Fe ⁺³ , Ni ⁺² , Mn ⁺² , Co ⁺² , Ca+2, Sr+2, Ba+2, Na+,			
	K+,, NH4 ⁺			
	UNIT-2 : Qualitative Analysis of Inorganic Mixture	BD	8	
	Experiments A: Preliminary Tests for Acid and Basic radicals in given	+SG		
	samples.			

	Acid Radicals: Cl ⁻ , Br ⁻ , I ⁻ , NO3 ¹ -, S ²⁻ , SO4 ⁻² , S ₂ O ₃ ²⁻ PO4 ⁻³ , BO3 ³⁻ , H3BO3.			
	Basic Radicals: Cu ⁺² , Cr ⁺³ , Fe ⁺³ , Ni ⁺² , Mn ⁺² , Co ⁺² , Ca+2, Sr+2, Ba+2, Na+,			
	K+, , NH4 ⁺			
	UNIT-2 : Qualitative Analysis of Inorganic Mixture	MS	8	
	Experiments B: Wet tests for Acid and Basic radicals in given samples.	+PD		
	Experiments C: Confirmatory tests.			
Dec	Experiments D: Insoluble Treatment			
	Acid Radicals: Cl ⁻ , Br ⁻ , I ⁻ , NO3 ¹ -, S ²⁻ , SO4 ⁻² , S ₂ O ₃ ²⁻ PO4 ⁻³ , BO3 ³⁻ , H3BO3.			
	Basic Radicals: Cu ⁺² , Cr ⁺³ , Fe ⁺³ , Ni ⁺² , Mn ⁺² , Co ⁺² , Ca+2, Sr+2, Ba+2, Na+,			
	K+, , NH4 ⁺			
	Insoluble: BaSO ₄ , SrSO ₄ , Cr ₂ O ₃ .			
	UNIT-2 : Qualitative Analysis of Inorganic Mixture	BD	8	
	Experiments B: Wet tests for Acid and Basic radicals in given samples.	+SG		
	Experiments C: Confirmatory tests.			
	Experiments D: Insoluble Treatment			
	Acid Radicals: Cl ⁻ , Br ⁻ , I ⁻ , NO3 ¹ -, S ²⁻ , SO4 ⁻² ,S ₂ O ₃ ²⁻ PO4 ⁻³ , BO3 ³⁻ , H3BO3.			
	Basic Radicals: Cu ⁺² , Cr ⁺³ , Fe ⁺³ , Ni ⁺² , Mn ⁺² , Co ⁺² , Ca+2, Sr+2, Ba+2, Na+,			
	K+, , NH4 ⁺			
	Insoluble: BaSO ₄ , SrSO ₄ , Cr ₂ O ₃ .			
Jan	UNIT-2 : Qualitative Analysis of Inorganic Mixture	MS	8	
	Analysis of unknown Inorganic Mixture samples	+PD		
	UNIT-2 : Qualitative Analysis of Inorganic Mixture	BD	8	
	Analysis of unknown Inorganic Mixture samples	+SG		
Feb	UNIT-2 : Qualitative Analysis of Inorganic Mixture	MS	8	
	Analysis of unknown Inorganic Mixture samples	+PD		
	UNIT-2 : Qualitative Analysis of Inorganic Mixture	BD	8	
	Analysis of unknown Inorganic Mixture samples	+SG		
Mar	UNIT-2 : Qualitative Analysis of Inorganic Mixture	MS	8	
	Analysis of unknown Inorganic Mixture samples	+PD		
	UNIT-2 : Qualitative Analysis of Inorganic Mixture	BD	8	
	Analysis of unknown Inorganic Mixture samples	+SG		
Apr	Revision of UNIT 1: Qualitative Analysis of Single Organic Compound	MS	4	
	(Solid)	+PD		
	Revision of UNIT-2 : Qualitative Analysis of Inorganic Mixture	BD	4	
		+SG		
		Total:	128	

Other resources:

Books:

- 1. Dutta, S.K., Physical Chemistry Experiments Bharati BookStall
- 2. Palit, S.R., Practical Physical Chemistry Science BookAgency

*Remarks will specify

The nature of the class-topic (viz. Theoretical, Practical, and Tutorial).
Methodology of teaching (whether using ICT, engaging students in group discussion, quiz etc. etc.)
Different modes of assessment. (Please check UGC evaluation reforms).

Semester: I Department of Chemistry Basirhat College

SESSION: 2018-19(JULY-DEC 2018)

Lesson Plan for Course: CHEMISTRY (G) Code: CEMGCOR01T Credit: 4

• Course coordinator: DR. SUMON MANDAL

• Course Outcome

CO1:In section A of the curriculum some fundamental topics of Inorganic Chemistry-I like atomic structure, Chemical Periodicity, Acids and bases and Redox reactions are discussed.

CO2: In Section B: Some Fundamentals of Organic Chemistry about *Electronic displacement like* inductive effect, resonance and hyperconjugation etc. are discussed.

Sl	Course Topic	Teac	Clas	Rem
		her	s-	arks*
			hour	
	Section A: Inorganic Chemistry-I	S.M.	2	
	Atomic Structure: Bohr's theory for hydrogen atom (simple mathematical			
	treatment).			
	Section B: Organic Chemistry-I	S.K.	1	
	Fundamentals of Organic Chemistry			
Jul	Electronic displacements: inductive effect, resonance and hyperconjugation.			
	Section A: Inorganic Chemistry-I	M.S.	2	
	ChemicalPeriodicity:Classification of elements on the basis of electronic			
	configuration: general characteristics of s-, p-, d- and f-block elements.			
	Positions of hydrogen and noble gases.			
	Section A: Inorganic Chemistry-I	SG	2	
	Acids and bases			
	Brönsted–Lowry concept, conjugate acids and bases.			
	Section A: Inorganic Chemistry-I	SM	4	
	Atomic spectra of hydrogen and Bohr's model, Sommerfeld's model, quantum			
	numbers and their significance, Pauli's exclusion principle,			
	Section B: Organic Chemistry-I	SK	4	
	Fundamentals of Organic Chemistry			
	Cleavage of bonds: homolytic and heterolytic; structure of organic molecules			
	on the basis of VBT; nucleophiles electrophiles; reactive intermediates:			
Aug	carbocations, carbanions and free radicals.			
	Section A: Inorganic Chemistry-I	MS	3	
	ChemicalPeriodicity			
	Atomic and ionic radii, ionization potential, electron affinity, and			
	electronegativity; periodic and group-wise variation of above properties in			
	respect of s- and p- blockelements.			
	Section A: Inorganic Chemistry-I	SG	4	
	Acids and bases			
	Relative strengths of acids and bases, effects of substituent and solvent,			
	differentiating and levelling solvents. Lewis acid-base concept.			
	Section A: Inorganic Chemistry-I	SM	4	
	Hund's rule, electronic configuration of many-electron atoms,			
	Aufbauprinciple and its limitations.			
í	Section B: Organic Chemistry-I	SK	4	
	Stereochemistry			

	Different types of isomerism: geometrical and ontical isomerism: concept of		
Sep			
~ · F		MS	3
		1.12	
-		SG	4
	Different types of isomerism; geometrical and optical isomerism; concept of chirality and optical activity (up to two carbon atoms); asymmetric carbon atom; elements of symmetry (plane and centre). Section A: Inorganic Chemistry-I Redoxreactions Balancing of equations by oxidation number and ion-electron method, oxidimetry and reductimetry. Section A: Inorganic Chemistry-I Acids and bases Classification of Lewis acids and bases, Lux-Flood concept and solvent system concept. Hard and soft acids and bases (HSAB concept), applications of HSAB process. Section B: Organic Chemistry-I Stereochemistry Interconversion of Fischer and Newman representations Section A: Inorganic Chemistry-I Redoxreactions Balancing of equations by oxidation number and ion-electron method, oxidimetry and reductimetry. Section B: Organic Chemistry-I Nucleophilic substitution andEliminationReactions Nucleophilic substitutions: S _N 1 and S _N 2 reactions. Section B: Organic Chemistry-I Enantiomerism and diastereomerism, mesocompounds; threoand erythro, D and L, cisand trans nomenclature; CIP Rules: R/S (upto 2 chiral carbon atoms) and EZ nomenclature. Section B: Organic Chemistry-I Nucleophilic substitutions: S _N 1 and S _N 2 reactions; eliminations: E1 and E2 reactions (elementary mechanistic aspects); Saytzeff and Hofmann eliminations; eliminations; S _N 1 and S _N 2 reactions; eliminations: E1 and E2 reactions (elementary mechanistic aspects); Saytzeff and Hofmann eliminations; eliminations; S _N 1 and S _N 2 reactions; eliminations: E1 and E2 reactions (benefity)-I Nucleophilic substitution and Elimination Reactions Nucleophilic substitutions: S _N 1 and S _N 2 reactions; eliminations: E1 and E2 reactions (benefity)-I Nucleophilic substitution: halogenation eliminations; elimi		
	hirality and optical activity (up to two carbon atoms); asymmetric carbon tom; elements of symmetry (plane and centre). The control of the control of the carbon atoms of the carbon and centre). The control of the carbon and centre of the		
	=	SK	1
	•		
-	•	MS	2
		1415	
Oct			
-		SG	1
	•	30	1
	-		
	-	SK	3
	•	SK	3
-	•	CC	4
		SG	4
	-		
-	·	2.60	1
	•	MS	4
Nov			
	·		
	_		
	•	SM	4
	. ,		
	•		
Ī	Section B: Organic Chemistry-I	SM	2
	Alkynes: (up to 5 Carbons). Preparation: acetylene from CaC2 and		
	conversion into higher alkynes; by dehalogenation of tetra halides and		
	dehydrohalogenation of vicinal dihalides.		
Dec	Section B: Organic Chemistry-I	SK	2
	Reactions: formation of metal acetylides, addition of bromine and alkaline		
	KMnO ₄ , ozonolysis and oxidation with hot alkaline KMnO ₄ .		
	Assessment: End-term Test	Total:	60 Hrs

- 1. Books:
- B.Sc. (general course) by Dr. S. Misra, Dr. G.C. Giri, Dr. S.K.Roy and Dr. G. Chanda (Santra Publication)
- Parmar, V. S. A Text Book of Organic Chemistry, S. Chand & Sons.
- Madan, R. L. Organic Chemistry, S. Chand & Sons.

2. Other resources:

*Remarks will specify

- The nature of the class-topic (viz. Theoretical, Practical, and Tutorial).
- Methodology of teaching (whether using ICT, engaging students in group discussion, quiz etc. etc.)
- Different modes of assessment. (Please check UGC evaluation reforms).

Semester: I Department of Chemistry Basirhat College

SESSION: 2018-19(JULY-DEC 2018)

Lesson Plan for Course: CHEMISTRY (G) Code: CEMGCOR01P Credit: 2

• Course coordinator: DR. Swastik Karmakar

• Course Outcome

CO1:In Section A: Some simple experiments of Inorganic Chemistry by titrimetric method are to be done.

CO2: In Section B: Organic Chemistry parts some tests of organic functional group and elemental analysis are to be done.

Sl	Course Topic	Teache	Class-	Remar
		r	hour	ks*
	Estimation of sodium carbonate and sodium hydrogen carbonate present in a	B.D.	2hr	
Jul	mixture			
	Estimation of sodium carbonate and sodium hydrogen carbonate present in a	S.M.	2hrs	
	mixture			
	Estimation of sodium carbonate and sodium hydrogen carbonate present in a	M.S.	2 hrs	
	mixture			
	Detection of special elements (N, Cl, and S) in organic compounds	S.K.	2 hrs	
	Estimation of oxalic acid by titrating it with KMnO4.	BD	4hrs	
	Estimation of oxalic acid by titrating it with KMnO4.	SM	4hrs	
Aug	Estimation of water of crystallization in Mohr's salt by titrating with			
	KMnO4.			
	Estimation of water of crystallization in Mohr's salt by titrating with	MS	4 hrs	
	KMnO4.			
	Detection of special elements (N, Cl, and S) in organic compoundsSolubility	SK	6 hrs	
	and Classification (solvents: H2O, dil. HCl, dil. NaOH)			
	Estimation of Cu (II) ions iodometrically using Na2S2O3.	BD	4hrs	
	Estimation of Cu (II) ions iodometrically using Na2S2O3.	SM	2 hrs	
Sep	Estimation of water of crystallization in Mohr's salt by titrating with	MS	4hrs	
	KMnO4.			
	Solubility and Classification (solvents: H2O, dil. HCl, dil. NaOH)	SK	2hrs	

	Solubility and Classification (solvents: H2O, dil. HCl, dil. NaOH)	SM	2 hrs	
	Detection of functional groups: Aromatic-NO2, Aromatic -NH2	MS	2 hrs	
	Detection of functional groups: -COOH, Carbonyl	SM	2 hrs	
	Detection of functional groups: Aromatic-OH, carbonyl	BD	2 Hrs	
Oct				
	Detection of functional groups: Aromatic-OH, carbonyl	BD	2 hrs	
Nov	Detection of special elements (N, Cl, and S) in organic unknown compounds	SM	2 hrs	
	Detection of special elements (N, Cl, and S) in organic unknown compounds	MS	2 hrs	
	Detection of functional groups of organic unknown compounds	SM	4 hrs	
	Solubility and Classification of organic unknown compounds	BD	2 hrs	
Dec	Detection of functional groups of organic unknown compounds	MS	2 hrs	
	Assessment: End-term Test Total:60 H		Hrs	

Books:

- Advanced Practical Chemistry: By S.C. Das.
- Vogel, A.I., Tatchell, A.R., Furnis, B.S., Hannaford, A.J. & Smith, P.W.G., *Textbook of Practical Organic Chemistry*, Prentice-Hall, 5th edition, 1996.

1. Other resources:

*Remarks will specify

- The nature of the class-topic (viz. Theoretical, Practical, and Tutorial).
- Methodology of teaching (whether using ICT, engaging students in group discussion, quiz etc. etc.)
- Different modes of assessment. (Please check UGC evaluation reforms).

COURSE PLANER

Department of Chemistry Basirhat College Session: 2018-19

CEMG/ SEM-II (JAN-JUNE 2019)

Paper II

CEMHGEC02T: STATES OF MATTER & CHEMICAL KINETICS, CHEMICAL BONDING &

MOLECULAR STRUCTUR, p-BLOCK ELEMENTS

(Credits: Theory-04, Practicals-02) Theory: 60 Lectures Marks: 50

Courses: CEMHGEC02T& CEMGCOR02T Total Marks: 50

Course coordinator: Dr. Monojit Sarkar

SL	Course Topic	Tea	Class	Rem
		cher	Hrs	arks
	Section A: Physical Chemistry-I	SM	2	
	Kinetic Theory of Gases and Real gases (10 Lectures)			
	Concept of pressure and temperature; Collision of gas molecules; Collision			
	diameter; Collision number and mean free path; Frequency of binary			
	collisions (similar and different molecules)			

	Section A: Physical Chemistry-I	MS	2	
	Liquids (06 Lectures)			
	Definition of Surface tension, its dimension and principle of its			
	determination using stalagmometer.			
	Section A: Physical Chemistry-I	BD	2	
	Chemical Kinetics (08 Lectures)			
	Introduction of rate law, Order and molecularity; Extent of reaction; rate			
Jan	constants; Rates of First, second and nth order reactions and their			
Jan				
	Differential and integrated forms (with derivation);	CIZ		
	Section B: Inorganic Chemistry-II	SK	2	
	(30 Lectures) Marks: 25			
	Chemical Bonding and Molecular Structure (16 Lectures)			
	Ionic Bonding: General characteristics of ionic bonding. Energy			
	considerations in ionic bonding, lattice energy and solvation energy and their			
	importance in the context of stability and solubility of ionic compounds.			
	Section A: Physical Chemistry-I	SM	4	
	Kinetic Theory of Gases and Real gases (10 Lectures)			
	Rate of effusion, Nature of distribution of velocities, Maxwell's distribution			
	of speed and kinetic energy; Average velocity, root mean square velocity			
	and most probable velocity; Principle of equipartition of energy and its			
	application to calculate the classical limit of molar heat capacity of gases			
	Section A: Physical Chemistry-I	MS	4	
		MS	4	
	Liquids (06 Lectures)			
	Viscosity of a liquid and principle of determination of coefficient of			
	viscosity using Ostwald viscometer; Effect of temperature on surface tension			
Feb	and coefficient of viscosity of a liquid (qualitative treatment only)			
	Section A: Physical Chemistry-I	BD	4	
	Chemical Kinetics (08 Lectures)			
	Rates of First, second and nth order reactions and their Differential and			
	integrated forms (with derivation); Pseudo first order reactions;			
	Determination of order of a reaction by half-life and differential method;			
	Opposing reactions, consecutive reactions and parallel reactions			
	Temperature dependence of rate constant; Arrhenius equation, energy of			
	activation;			
	Section B: Inorganic Chemistry-II	SK	4	
	Chemical Bonding and Molecular Structure (16 Lectures)	, J.		
	Statement of Born-Landé equation for calculation of lattice energy,			
	BornHaber cycle and its applications, polarizing power and polarizability.			
	Fajan's rules, ionic character in covalent compounds, bond moment, dipole			
	moment and percentage ionic character.	G3.5		
	Kinetic Theory of Gases and Real gases (10 Lectures)	SM	4	
	Deviation of gases from ideal behavior; compressibility factor; Boyle			
	temperature; Andrew"s and Amagat"s plots; van der Waals equation and its			
	features; its derivation and application in explaining real gas behaviour;			
	Existence of critical state, Critical constants in terms of van der Waals			
	constants; Law of corresponding states			
	Viscosity of gases and effect of temperature and pressure on coefficient of			
	viscosity (qualitative treatment only)			
	Section A: Physical Chemistry-I	MS	4	
	Solids (06 Lectures)			
	Forms of solids, crystal systems, unit cells, Bravais lattice types, Symmetry			
	elements; Laws of Crystallography - Law of constancy of interfacial angles,			
	Law of rational indices; Miller indices of different planes and interplanar			
1	distance, Bragg"s law; Structures of NaCl, KCl and CsCl (qualitative			

	treatment only); Defects in crystals; Glasses and liquid crystals.			
Mar	Section A: Physical Chemistry-I	BD	2+2	
	Chemical Kinetics (08 Lectures)			
	Collision theory; Lindemann theory of unimolecular reaction; outline of			
	Transition State theory (classical treatment)			
	Section B: Inorganic Chemistry-II			
	Comparative study of p-block elements: (14 Lectures)			
	Group trends in electronic configuration, modification of pure elements,			
	common oxidation states, inert pair effect, and their important			
		SK	4	
	Section B: Inorganic Chemistry-II Chemical Ponding and Molacular Structure (16 Lectures)	SK	4	
	Chemical Bonding and Molecular Structure (16 Lectures)			
	Covalent bonding: VB Approach: Shapes of some inorganic molecules and			
	ions on the basis of VSEPR and hybridization with suitable examples of			
	linear, trigonal planar, square planar, tetrahedral, trigonalbipyramidal and			
	octahedral arrangements.			
	Concept of resonance and resonating structures in various inorganic and			
	organic compounds.			
	Section B: Inorganic Chemistry-II	SM	2	
	Comparative study of p-block elements: (14 Lectures)			
	Group trends in electronic configuration, modification of pure elements,			
	common oxidation states, inert pair effect, and their important compounds in			
	respect of the following groups of elements:			
	i)B-Al-Ga-In-Tl			
	Section A: Physical Chemistry-I	MS	2	
	Solids (06 Lectures)			
	Bragg's law; Structures of NaCl, KCl and CsCl (qualitative treatment only);			
	Defects in crystals; Glasses and liquid crystals.			
	Section B: Inorganic Chemistry-II	BD	4	
	Comparative study of p-block elements: (14 Lectures)			
Apr	Group trends in electronic configuration, modification of pure elements,			
•	common oxidation states, inert pair effect, and their important compounds in			
	respect of the following groups of elements:			
	ii)C-Si-Ge-Sn-Pb			
	Section B: Inorganic Chemistry-II	SK	4	
	(30 Lectures) Marks: 25		7	
	Chemical Bonding and Molecular Structure (16 Lectures)			
	MO Approach: Rules for the LCAO method, bonding and antibonding MOs			
	and their characteristics for s-s, s-p and p-p combinations of atomic orbitals,			
	nonbonding combination of orbitals, MO treatment of homonuclear diatomic			
	molecules of 1st and 2nd periods. (including idea of s - p mixing) and			
	heteronuclear diatomic molecules such as CO, NO and NO+. Comparison of			
	VB and MO approaches.	CM	2	
	Section B: Inorganic Chemistry-II	SM	2	
	Comparative study of p-block elements: (14 Lectures)			
	Group trends in electronic configuration, modification of pure elements,			
	common oxidation states, inert pair effect, and their important compounds in			
	respect of the following groups of elements:			
	iii)N-P-As-Sb-Bi			
	Section B: Inorganic Chemistry-II	MS	2	
	Comparative study of p-block elements: (14 Lectures)			
	Group trends in electronic configuration, modification of pure elements,			
	common oxidation states, inert pair effect, and their important compounds in			
	respect of the following groups of elements:			

	iv)O-S-Se-Te			
May				
		DD	2	
	Section B: Inorganic Chemistry-II	BD	2	
	Comparative study of p-block elements: (14 Lectures)			
	Group trends in electronic configuration, modification of pure elements,			
	common oxidation states, inert pair effect, and their important compounds in			
	respect of the following groups of elements:			
	v)F-Cl-Br-I			
	Section B: Inorganic Chemistry-II	SK	2	
	Chemical Bonding and Molecular Structure (16 Lectures)			
	MO treatment of homonuclear diatomic molecules of 1st and 2nd periods.			
	(Including idea of s - p mixing) and heteronuclear diatomic molecules such as			
	CO, NO and NO+. Comparison of VB and MO approaches.			
			60	

R	es	O	nr	C	es	
1,	.CO	v	uı	·	\sim	,

Other resources:

Book:

- 1. Barrow, G.M. *Physical Chemistry* Tata McGraw-Hill(2007).
- 2. Castellan, G.W. *Physical Chemistry* 4th Ed. Narosa(2004).
- 3. Kotz, J.C., Treichel, P.M. & Townsend, J.R. *General Chemistry* Cengage Learning India Pvt. Ltd., New Delhi (2009).
- 4. Mahan, B.H. *University Chemistry* 3rd Ed. Narosa(1998).
- 5. Ekambaram, S. General Chemistry, Pearson.
- 6. Petrucci, R.H. General Chemistry 5th Ed. Macmillan Publishing Co.: New York(1985).
- 7. Chugh, K.L., Agnish, S.L. *A Text Book of Physical Chemistry* Kalyani Publishers8.Bahl, B.S., Bahl, A., Tuli, G.D., *Essentials of Physical Chemistry* S. Chand & Co.ltd.
- 9. Palit, S. R., *Elementary Physical Chemistry* Book Syndicate Pvt.Ltd.
- 10. Mandal, A. K. Degree Physical and General Chemistry Sarat BookHouse
- 11. Pahari, S., *Physical Chemistry* New Central BookAgency

The nature of the class-topic (viz. Theoretical, Practical, and Tutorial).
Methodology of teaching (whether using ICT, engaging students in group discussion, quiz etc. etc.)
Different modes of assessment. (Please check UGC evaluation reforms).

COURSE PLANER

Department of Chemistry Basirhat College Session: 2018-19

CEMG/ SEM-II (JAN-JUNE 2019)

Paper II

CEMHGEC01P: STATES OF MATTER & CHEMICAL KINETICS, CHEMICAL BONDING & MOLECULAR STRUCTUR, p-BLOCK ELEMENTS LAB

Courses: CEMHGEC02P& CEMGCOR02P Total Marks: 25

Course coordinator: Dr. Bidyut Debnath

Course planner

For pure science Teacher: SK+BD and MS+SM and for bio science Teacher: BD+SM and MS+BD And only lesson plan for pure science are given. Same will be for bio science

SL	Course Topic	Teac	Clas	Rem
		her	S	arks
			Hrs	
	Section A: Physical Chemistry-LAB	SK+	2	
	(I) Surface tension measurement (use of organic solvents excluded)	BD		
	a) Determination of the surface tension of a liquid or a dilute solution using a			
Jan	Stalagmometer			
	Section A: Physical Chemistry-LAB	MS+	2	
	(I) Surface tension measurement (use of organic solvents excluded)	SM		
	b) Study of the variation of surface tension of a detergent solution with			
	concentration			
	Section A: Physical Chemistry-LAB	SK+	8	
Feb		BD		
	(II) Viscosity measurement (use of organic solvents excluded)			
	a) Determination of the relative and absolute viscosity of a liquid or			
	dilute solution using an Ostwald"s viscometer.			
	a) b) Study of the variation of viscosity of an aqueous solution with			
	concentration of solute.			
	Section A: Physical Chemistry-LAB	MS+	8	
	(III) Study the kinetics of the following reactions	SM		
	Initial rate method: Iodide-persulphate reaction			
	Section A: Physical Chemistry-LAB			
	Integrated rate method: Acid hydrolysis of methyl acetate with hydrochloric			
	acid.			
	Section A: Physical Chemistry-LAB	SK+	8	
	Compare the strengths of HCl and H2SO4 by studying kinetics of hydrolysis	BD		
Mar	of methyl acetate.			
	Section B: Inorganic Chemistry-LAB			
	Qualitative semimicro analysis of mixtures containing three radicals.			
	Emphasis should be given to the understanding of the chemistry of different			
	reactions.			
	Acid Radicals: Cl-, Br-, I-, NO2-, NO3-			
	Section B: Inorganic Chemistry-LAB	MS+	8	
	Qualitative semimicro analysis of mixtures containing three radicals.	SM		
	Emphasis should be given to the understanding of the chemistry of different			
	reactions.			

	Basic Radicals: Na+, K+, Ca2+, Sr2+			
	Section B: Inorganic Chemistry-LAB	SK+	8	
April	Qualitative semimicro analysis of mixtures containing three radicals.	BD		
	Emphasis should be given to the understanding of the chemistry of different			
	reactions.			
	Basic Radicals: Ba2+, Cr3+, Mn2+, Fe3+			
	Section B: Inorganic Chemistry-LAB	MS+	8	
	Qualitative semimicro analysis of mixtures containing three radicals.	SM		
	Emphasis should be given to the understanding of the chemistry of different			
	reactions.			
	Basic Radicals: Ni2+, Cu2+, NH4+.			
	Section A: Physical Chemistry-LAB	SK+	4	
	Revision	BD		
May	Section B: Inorganic Chemistry-LAB	MS+	4	
	Revision	SM		
	7	TOTAL	60	

Reference Books:

- 1. *University Hand Book of Undergraduate Chemistry Experiments*, edited by Mukherjee, G. N., University of Calcutta, 2003.
- 2. Palit, S.R., Practical Physical Chemistry Science Book Agency
- 3. Mukherjee, N.G., Selected Experiments in Physical Chemistry J. N. Ghose& Sons
- 4. Dutta, S.K., Physical Chemistry Experiments Bharati Book Stall
- 5. Svehla, G. Vogel's Qualitative Inorganic Analysis, Pearson Education, 2012.
- 6. Khosla, B. D.; Garg, V. C. &Gulati, A. Senior Practical Physical Chemistry, R. Chand & Co.: New Delhi (2011)

Other resources:

$*\mathbf{p}$	Δm	ar	ke	XX71	11	snec	ifx	
"K	еш	иπ	KS	wı	П	SDEC	Hν	١

Different	modes	of	assessment.	(Please	check	UGC	evaluation	reforms)
Methodologetc. etc.)	gy of teac	hing ((whether using	ICT, engaş	ging stude	ents in gr	oup discussio	n, quiz
The nature of the class-topic (viz. Theoretical, Practical, and Tutorial).								